The antiandrogen bicalutamide activates the androgen receptor (AR) with a mutation in codon 741 through the mitogen activated protein kinase (MARK) pathway in human prostate cancer PC3 cells.
نویسندگان
چکیده
The objective of this study was to assess the effect of antiandrogen on the activation of mutated androgen receptor (AR) and its signaling pathway in prostate cancer. We transfected the AR gene with a point mutation at codon 741 (tryptophan to leucine; W741L) into human androgen-independent prostate cancer PC3 cells lacking the expression of AR, and established PC3 cells overexpressing mutant type AR (PC3/W741L). Changes in the phenotype in these cells were compared to those in PC3 cells transfected with wild- type AR (PC3/Wild) and control vector alone (PC3/Co). There was no significant differences in the growth among PC3/Co, PC3/Wild and PC3/W741L cells. A transactivation assay using these cells showed that bicalutamide activated W741L mutant type AR, but not wild-type AR, while hydroxyflutamide failed to activate either type of ARs. Treatment with specific inhibitors of the MAPK or STST3 pathway (UO126 or AG490, respectively), in contrast to treatment with the Akt pathway inhibitor LY294002, significantly inhibited the dihydrotestosterone-induced activation of both wild-type and mutant ARs; however, activation of W741L mutant AR by bicalutamide was significantly inhibited by treatment with UO126, in contrast to treatment with AG490 or LY294002. Furthermore, treatment of PC3/W741L with bicalutamide, in contrast to treatment with hydroxyflutamide, resulted in significant upregulation of phosphorylated p44/42 MAPK. These findings suggest that the MAPK pathway might be involved in the activation of the AR with a point mutation at codon 741 induced by treatment with the antiandrogen bicalutamide.
منابع مشابه
Interleukin-6 induces androgen responsiveness in prostate cancer cells through up-regulation of androgen receptor expression.
Interleukin-6 (IL-6) induces prostate cancer (CaP) cell proliferation in vitro. Several lines of evidence suggest that IL-6 may promote CaP progression through induction of an androgen response. In this work, we explored whether IL-6 induces androgen responsiveness through modulation of androgen receptor (AR) expression. We found that in the absence of androgen, IL-6 increased prostate-specific...
متن کاملNovel mutations of androgen receptor: a possible mechanism of bicalutamide withdrawal syndrome.
Most prostate cancers (PCs) become resistant to combined androgen blockade therapy with surgical or medical castration and antiandrogens after several years. Some of these refractory PCs regress after discontinuation of antiandrogen administration [antiandrogen withdrawal syndrome (AWS)]. Although the molecular mechanisms of the AWS are not fully understood because of the lack of suitable exper...
متن کاملAntiandrogen bicalutamide promotes tumor growth in a novel androgen-dependent prostate cancer xenograft model derived from a bicalutamide-treated patient.
Androgen ablation therapies are effective in controlling prostate cancer. Although most cancers relapse and progress despite androgen ablation, some patients experience antiandrogen withdrawal syndrome, in which those treated with antiandrogen show clinical improvement when antiandrogen is discontinued. Although the androgen receptor (AR) is suggested to play an important role in prostate cance...
متن کاملInterleukin-6 regulates prostate-specific protein expression in prostate carcinoma cells by activation of the androgen receptor.
Interleukin-6 (IL-6) levels are frequently elevated in sera of patients with metastatic prostate cancer. IL-6 receptors are expressed in prostate cancer cell lines, as well as in benign prostate hyperplasia and prostate cancer tissue specimens. The androgen receptor (AR) is a key transcription factor that is present in all stages of prostate carcinoma, even in therapy-refractory tumors. In an a...
متن کاملAndrogen-independent induction of prostate-specific antigen gene expression via cross-talk between the androgen receptor and protein kinase A signal transduction pathways.
Transcription of the prostate-specific antigen (PSA) gene escapes regulation by androgens in advanced prostate cancer. To determine the molecular mechanism(s) of androgen-independent regulation of the PSA gene, the possibility that the androgen receptor (AR) is activated in the absence of androgen by stimulation of protein kinase A (PKA) was investigated. Activation of PKA by forskolin resulted...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Oncology reports
دوره 24 5 شماره
صفحات -
تاریخ انتشار 2010